Soil salinity and salt tolerance of vegetable crops

Yuncong Li, Professor of Soil and Water Science, TREC/IFAS, UF

David G. Liu, Assistant Professor of Horticultural Science, HS/IFAS, UF

Teresa Olczyk, Miami-Dade County Extension Director, IFAS, UF

1. What is soil salinity?

Soil salinity is the amount of soluble salts in a soil and measured as electrical conductivity (EC) with unit of deciSiemens per meter (dS/m), milliSimens per centimeter (mS/cm), or millimho per centimeter (mmho/cm). You may also see other units such as μ S/cm, μ mho/cm. The units of EC were mmhos/cm until changed to dS/m. 1 mmho/cm = 1 dS/m = 1 mS/cm. Soils with high concentrations of salts will have high readings of EC because they have high capacity to pass electrical flow.

2. How to collect soil samples for measuring soil salinity?

- 1) Collect a composite samples (mixing ~10 individual samples) throughout the field to get a representative sample of the field (~5 acres).
- 2) Collect separate composite samples separately if there are trouble spots that you suspect may have high salt contents.
- 3) Collect two depths (0-6" and 6-12")
- 4) Prepare a clean shovel, a clean bucket or bowl, clean Ziploc bags or paper bags.
- 5) Pick a location. If possible, record GPS location.
- 6) Excavate to 6" (Fig 1)
- 7) After shaping face, cut 1" slab from the face (Fig 2).
- 8) Cut the soil on both sides of a 1-inch section (Fig 3).
- 9) Discard the left and right sections into the hole.
- 10) Discard any plant materials, large organic matter, large rocks, or other debris.
- 11) Place soil Place soil sample in the plastic bucket (Fig 4).
- 12) After all samples are collected, mix the soil and transfer ~0.5-1 lb soil to a plastic or paper container.
- 13) Fill in the hole and smooth the surface before taking another sample or moving to another sample location.
- 14) Label soil sample bags with sample number or name, sample depth, date, name of the grower.
- 15) Clean all equipment and containers after each sample has been collected. This step avoids soil from one sample from contaminating the next soil sample

Fig. 1 Fig 2

Fig 3 Fig 4

3. How to measure soil salinity?

We will follow the procedure described in the UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual. http://edis.ifas.ufl.edu/pdffiles/SS/SS31200.pdf

You can use a potable EC meter or a standard desk pH/EC meter.

4. Can we measure chloride in soil samples?

Yes. But we do not have soil chloride standard for interpreting soil testing results.

5. Classification of salt-affected soils (USDA/NRCS)

Class	EC	Sodium	Exchangeable
	(dS/m)	Adsorption	Sodium
		Ratio	Percentage
		(SAR)	(ESP)
Non-saline	0-2	<13	<15
Very slightly saline	2-4	<13	<15
Saline	>4	<13	<15
Sodic	<4	>13	>15
Saline-sodic	>4	>13	>15

6. Guidelines in interpreting EC data from soil extracts (1:2 soil-to-water ratio) (Adapted from University of Georgia).

EC (dS/m)	Rating	Interpretation	
0-0.15	Very low	Plants may be starved of nutrients.	
0.16-0.5	Low	If soil lacks organic matter. Satisfactory if soil is	
		high in organic matter.	
0.51-1.25	Medium	Okay range for established plants.	
1.26-1.75	High	Okay for most established plants. Too high for	
		seedlings or cuttings.	
1.76-2	Very high	Plants usually stunted or chlorotic.	
>2	Excessively high	Plants severely dwarfed; seedlings and rooted	
		cuttings frequently killed.	

7. Salt tolerance of vegetable crops (Grieve et al., 2012)

Crop	Botanical name	Threshold	Reference
		Soil EC	
		dS/m	
Bean, mung	Vigna radiate (L.) R. Wilcz	1.8	Minhas et al., 1990
Broccoli	Brassica oleracea L.	1.3	Bernstein & Ayars, 1949a;
			Bernstein et al., 1974
Cabbage	B. oleracea L.	1.8	Bernstein & Ayars, 1949a;
			Bernstein et al., 1974; Osawa,
			1965
Cauliflower	Brassica oleracea L.	1.5	
Corn, sweet	Zea mays L.	1.7	Bernstein & Ayars, 1949b
Cowpea	Vigna unguiculata L.	4.9	West & Francois, 1982

Cucumber	Cucumis sativus L.	2.5	Osawa, 1965; Ploegman &
			Bierhuizen, 1970
Eggplant	Solanum melongena L	1.1	Heuer et al., 1986
Lettuce	Lactuca sativa L.	1.3	Ayars et al., 1951; Bernstein et
			al., 1974; Osawa, 1965
Okra	Abelmoschus esculentus L.	1.2	Rhoades et al., 1992
Onion	Allium cepa L.	1.2	Bernstein & Ayars, 1953b;
			Bernstein et al., 1974; Hoffman
			& Rawlins, 1971; Osawa, 1965
Pea	Pisum sativum L.	3.4	Cerda et al., 1982
Pepper	Capsicum annuum L.	3.4	Bernstein, 1954; Osawa, 1965;
			USSL ^{††}
Potato	Solanum tuberosum L.	1.7	Bernstein et al., 1951
Squash,	C. pepo L. var melopepo	4.9	Francois, 1985; Graifenberg et
zucchini	(L.) Alef.		al., 1996
Strawberry	Fragaria x Ananassa Duch.	1.0	Ehlig & Bernstein, 1958; Osawa,
			1965
Sweet potato	Ipomoea batatas (L.) Lam.	1.5	Greig & Smith, 1962; USSL ^{††}
Tomato	Lycopersicon lycopersicum	2.5	Bierhuizen & Ploeman, 1967;
	(L.) Karst. ex Farw.		Hayward & Long, 1943; Lyon,
			1941; Shalhevet & Yaron, 1973
Tomato,	L. lycopersicum var.	1.7	Caro et al., 1991
cherry	Cerasiforme (Dunal) Alef.		

7. Soil salinity (dS/m) for potential yield reduction from saline soil for selected crops (Gardon et al, 2007)

Crops	Relative yield decrease %			
	0	10	25	50
Squash, zucchin	4.7	5.8	7.4	10.0
Asparagus	4.1	9.1	16.6	29.1
Broccoli	2.8	3.9	5.5	8.2
Tomato	2.5	3.5	5.0	7.5
Cucumber	2.5	3.3	4.4	6.3
Cantaloupe	2.2	3.6	5.7	9.1
Spinach	2.0	3.3	5.3	8.6
Cabbage	1.8	2.8	4.4	7.0
Potato	1.7	2.5	3.8	5.9
Sweet corn	1.7	2.5	3.8	5.9
Pepper	1.5	2.2	3.3	5.1
Sweet Potato	1.5	2.4	3.8	6.0
Lettuce	1.3	2.1	3.2	5.2
onion	1.2	1.8	2.8	4.3

Carrot	1.0	1.7	2.8	4.6	
Bean	1.0	1.5	2.3	3.6	
Strawberry	1.0	1.3	1.7	2.5	