

ORIDA

MASTER

GARDENER

Basic Nematology

Mill Martin Martin

Learning Objectives:

- Define what plant parasitic nematodes (PPN) are and how they damage plants.
- Recognize plant symptoms resulting from PPN damage.
- Know PPN management strategies for various crops.
- Describe how to solarize soil to reduce PPN.
- Be familiar with nematode sampling diagnostic capabilities provided through UF/IFAS.

aland and a faile while and a fail and and and a share a faile and a fail the fail of the

Part I:

INTRODUCTION TO PLANT PARASITIC NEMATODES (PPN)

What Are PPN (Plant-Parasitic Nematodes)?

- Unsegmented roundworms
 - Different from earthworms and other common worms
- Microscopic
- Live in a film of water surrounding soil particles
- Use a spear-like mouthpart (stylet) to feed on plants
- Inhibit root growth and plant performance

Where are Nematodes Found?

Marken alun while while and an and an alun and an and alune to the top

"Good" versus "Bad" nematodes

- Bacterial feeders
- Fungal feeders
- Predators
- Animal-parasites
- Plant-parasites

Harmful

Harmless or Helpful

General Life Cycle of PPN

MANANA

Nematode reproduction increases with increasing soil temperatures; decreases as soils cool

Marken alure Maler 11 An Carbon Marken Marken and alure 1870

How do PPN Feed?

- Mouth part (stylet) resembles a hypodermic needle
- Stylet inserted into plant cells
- **Digestive juices injected** into cell
- Plant juices ingested through stylet

Stylet of a spiral nematode

Steinernema scapterisci nematodes emerging from an adult mole cricket in the laboratory.

Different nematodes:

a) Bacterivore, b) Fungivore, c) Herbivore, d) Omnivore, e) Predator

Nematophagous Fungi

Ectoparasites-feeding

Marken alure Maler 11/11 (m) your Man Marken Marken alure 1870

Where do PPN Feed?

- Most PPN feed on plant roots
 - Exception is Aphelenchoides spp. which feed on foliage
 - Foliar nematodes are economically important in some nursery crops:
 - Chrysanthemum **Certain Ferns** Anthurium Azalea

Where do PPN Feed?

Ectoparasitic:

feed on outside of root

Stylet inserted into root tip

Marken alure Maler 1 All and grand and full a large shall all the **Endoparasitic:**

feed inside root

Important PPN in Florida

- Ectoparasites
 - Sting
 - Stubby-root
 - Spiral
 - Ring

- Migratory endoparasites
 - Lesion
 - Lance
 - Burrowing
 - Foliar

- Sedentary endoparasites
 - Root-knot
 - Citrus

How do PPN Damage Plants?

Martin alure Maler 11 Martin Martin Martin Martin Martin Martin Com

- Feeding reduces plant's ability to absorb water & nutrients.
 - Damage exposes plant roots to infection by diseases.

Symptoms of Decline

Above-ground

- Yellowing; nutrient deficiencies
- Stunting; slow decline
- Premature wilting & slow recovery

Marshona Caluter Maler Marshona Mana Marshona Alus

- Thinning
- Death

Note similarities to:

- Drought
- Disease symptoms
- General stress

Symptoms of Decline

Below-ground

- Symptoms vary with type of nematode and plant.
- General root symptoms:
 - Stunted, short
 - Deformed
 - Dark or rotted
 - Lesions, galls
 - Reduced root proliferation

Healthy roots **Damaged Roots**

Rate of Decline

Depends on:

- Nematode species
- Population density
- Susceptibility of plant/variety
- Soil temperature & texture
- Presence of other stresses

Part II:

PPN IN THE VEGETABLE GARDEN

Are Nematodes the Problem? Symptoms May Be Obvious...

Egg mass

Adult female

Root-Knot Nematodes

- Three common RN species in FL
- Recognized by *galls* on fibrous roots
- Galls may be very small
- Small galls enlarge and may merge
- Susceptible: tomatoes (solanaceae), potatoes, okra, beans (legumes), squash (cucurbits), carrots

Are Nematodes the Problem? <u>Not</u> So Obvious Symptoms

Root-Knot Nematodes (Meloidogyne spp.)

- In (taproots), galls may not be as visible; roots get knobby.
- In onions, galls are barely noticeable; bulbs may be discolored and smaller.
- In potatoes, appearance is marred; cross-section reveals speckling (feeding sites).

Galls versus Nodules

Numerous PPN Attack Vegetables

Nematode	Bean and Pea	Carrot	Celery	Crucifer	Cucurbit	Egg- plant	Leaf Crop	Okra	Onion	Pep- per	Potato	Sweet Corn	Sweet Pot	Tom- ato
Root Knot	х	Х	Х	х	Х	х	х	х	х	Х	Х		Х	Х
Sting	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
Stubby Root	Х		x	х		x	x		x	Х	x	x		х
Root Lesion												х		
Cyst				Х										
Awl	Х		Х									Х		
Stunt												Х		
Lance												Х		
Reniform	Х												х	

Source: EDIS - ENY-012 Nematode Management in the Vegetable Garden

PPN Management Strategies

No one management option will resolve a nematode problem.

- Chemical nematicides none
- Bio-nematicides suppress only (MeloCon)
- Sanitation
 - Don't introduce contaminated plants or soil.
 - Remove plants and roots after harvest.
 - Keep garden weed-free.
- Soil solarization
- Cover crops
- Organic amendments/ Soil replacement
- Crop rotation & resistant varieties

Sanitation and Prevention

• Nematodes move very slowly on their own; moved by soil, water, plants, and/or tools.

Martin and a second and a second and and a second a

- Power wash or disinfect tools with a 10% bleach solution.
- Remove nematode-infected roots after harvest & do not compost.

What spreads nematodes?

Shovels, Hoes, Rakes, Shoes, Boots, Wheelbarrows,Vehicle Tires, Neighbors, Family members, Pets,Improperly or partially decomposed compost

Soil Solarization

- Work and moisten soil.
 - -Activates pathogens/weeds
 - Increases heat conductivity
- Cover soil with clear plastic (minimum 1.5) or thermalinfrared retentive film.
- Seal edges with soil to prevent heat loss.
- Soil temps should reach 95°-140°F (135°F ideal) to a depth of **4-12 inches**.
- Leave plastic on for at least 6 weeks the longer the better.

Soil Solarization

Marken adam Mala water bar and and and and and and a share to the to the

- Works best in summer.
- Does not work well in shaded areas.
- Affects all living organisms in upper 6-8 inches of soil (weeds, disease pathogens, insects, nematodes).
- Beneficial organisms are also negatively affected but recolonize quickly.
- No significant impact on organic matter decomposition.
- Do not mix or till soil after solarization.

Soil Solarization

ulawana alin while while and and and and and and aline BINTAN

Research results:

 Root-knot nematode eggs and juveniles are highly susceptible to heat over short time period.
 Meloidogyne incognita Ex: 390 hours required at 100°F; 15 hours at 108°F.

-*M. javanica* juveniles killed instantly at 122°F; eggs died after 2-3 weeks at average temp of 109°F

- Most PPN species recolonize soil to damaging population numbers by the end of the crop cycle following solarization.
- Solarization followed by a cowpea cover crop suppressed root-knot nematode population to a level equivalent to methyl bromide treatment.

Organic Amendments

- Add as compost, manure, green manure, etc.
- Enhance soil microbes & beneficial nematodes.

Mary manufally when when he have a start and he have a start and the have been been to be the to be the start of the start

- Release chemicals toxic to nematodes as they decompose (Ex: Brassica).
- Benefit the soil and plant health.

Cover Crops

- -Grown between vegetable growing seasons.
- -Improve soil fertility and structure.
- -Decrease erosion.
- -Suppress weeds, insects, nematodes, disease.
- -May be incorporated as "green manure."
- -Enhance many beneficial organisms.
- -Legume cover crops supply nitrogen to subsequent crops.

Cowpea **Cover Crop**

More "Nematicidal" Cover Crops

Marken alun while when a har bear allow a full and a second alune of the

	Nematodes				
Cover Crop	Root-knot*	Sting*			
Hairy Indigo, Indigofera hirsuta	G	G			
Pangola digitgrass, <i>Digitaria decumbens</i>	G	Р			
Transvala digitgrass, <i>Digitaria decumbens</i>	F	G			
Showy crotalaria, Crotalaria spectabilis	G	G			

* G = good control of the most common species of this nematode; P = poor or no control of this nematode; F = fair control

** Effectiveness differs among varieties of marigolds; one report stated yellow or gold "Petite French" types are most effective against the greatest number of root-knot nematode species.

Excerpted from: EDIS – ENY-012, Nematode Management in the Vegetable Garden; See also: EDIS – ENY-063, Cover Crops for Managing Root-Knot Nematodes

"Nematicidal" Cover Crops

Cover Crop	Root-knot (<i>Meloidogyne</i> spp.)	Sting (Belonolaimus longicaudaus)	For more detailed information see:
Cowpea (<i>Vigna unguiculata</i>)	Depends	No	<u>IN516</u>
Sunn Hemp (<i>Crotolaria juncea</i>)	Yes	Yes	<u>NG043</u>
Sorghum (<i>Sorghum</i> spp.)	Yes	No	<u>IN531</u>
Marigold (Tagetes spp.)	Depends	No	<u>NG045</u>
Velvetbean (<i>Mucuna deeringiana</i>)	Depends	Yes	<u>IN483</u>
Rye (<i>Secale cereale</i>)	Yes	No	
Bahiagrass (<i>Paspalum notatum</i>)	Yes	No	

Yes = should reduce nematode populations. No = might increase nematode populations. Depends = some varieties are resistant, others are susceptible, see "more detailed information" for variety-specific information. From: EDIS-ENY-059 *Soil Organic Matter, Green Manures, and Cover Crops for Nematode Mgt.*

"Nematicidal" Cover Crops

This: Marigold Planted as Cover Crop

Not this: Marigold Inter-planted with Crop

See EDIS pub: Marigolds for Nematode Management (ENY-056)

Use Resistant Varieties

Martin a falle where the fall of the second and be had a start a share the fall of the second s

- Look for VFN designation on seed pack or tag.*
- Use fruits / ornamentals grafted on nematode resistant rootstock.

Root-Knot Resistant

Tomatoes

- •Better Boy
- Celebrity
- Beefmaster
- Sugar Snack

*Resistant: refers to only one or two species of root-knot nematodes. May still be damaged by other species of root-knot nematodes or other types of nematodes.

Root Destruction

• Tilling non-infested roots into the soil will improve soil health.

If All Else Fails – Try Container Gardening

• Containers should not be in contact nematode-infested soil.

- Use pest-free growing media.
- Use disinfected tools (or keep them separate.)
- If possible, isolate containers with screen, cages, etc. wild animals can move soil around.

Activity 1

Crop Rotation and Resistant Varieties

- Many types of PPN damage vegetables particularly Root-Knot nematodes.
- One method of reducing damage is to rotate crops in the garden and to plant more nematode resistant vegetable varieties.
- Refer to Activity 1 worksheet in your MG Handbook.

Marken about Malor 1/14 (marked and Marked along the Calence BIC To A.

Part III:

MANAGEMENT OF PPN IN TURFGRASSES

Symptoms of Decline in Turfgrass

Above-ground symptoms

- Irregularly-shaped patches
- Yellowing, wilting, and browning
- Thinning-grass dies; weeds thrive
- Death of areas

Note similarities to:

- Drought
- Insect damage
- Disease
- General stress

Symptoms of Decline in Turfgrass

Marken alun Malur Marken Marken Apple Marken Marken Marken Bar Call

Below-ground symptoms Roots are:

- Abnormally short and stubby;
- Darkened or rotten;
- Appear "cropped off" just below soil surface;
- Root galls or knots usually not evident.

Symptoms of Decline in Turfgrass

Mary man about the land of the second and have been been to the second and the se

Note irregular areas of declining turf

Drought/water restrictions can cause damage to become more severe

Sod farm. PPN may be introduced into landscapes in new sod.

Turfgrass Susceptibility to PPN

Marker M.L.	a hard a bear		
Grass Species	Susceptibility	Nematode Species	Notes
Bahiagrass	Rarely damaged		Most tolerant turfgrass to PPN
St. Augustinegrass	Commonly damaged	Lance, stubby-root, root-knot	'Floratam' tolerant of sting nematodes
Zoysiagrass	Commonly damaged	Sting, root-knot, stubby-root, lance	No difference among cultivars
Bermudagrass	Commonly damaged	Sting, root-knot, stubby-root, lance	'Celebration' and 'Princess 77' more tolerant to sting than 'Tifway'
Centipedegrass	Commonly damaged	Ring, sting, root- knot, stubby-root, lance	Very susceptible to ring
Seashore Paspalum	Depends	Spiral, sting, lance	Tolerant to most; very susceptible to spiral; occasionally damaged by lance

Nematodes and Weeds

alass for a failure Maler is My land and have a failed a

- Certain weeds tolerate nematodes and proliferate as grass thins.
- Weeds can serve as PPN reservoirs as grass declines.

Management of Nematodes in Turfgrass

- Choose PPN tolerant grasses.
- Right turf/right place (sun/shade)
- Don't overseed in winter if nematodes are a problem.
- Organic Soil Amendments:
 - Composted municipal sludge or composted manures;
 - Increase soil water & nutrient holding capacity;
 - May increase plant tolerance to PPN;
 - May stimulate natural enemies of PPN
- Proper maintenance (mowing, irrigation, and fertilization) reduces stress and promotes root vigor.

Management of Nematodes in Turfgrass

As of 2017, three products are labeled for residential turfgrass:

Martin al aller and the second and build and and aller and aller all the second and the second and the second as t

<u>Nortica</u>

- Root-knot, Sting, & Lance
- Protectant
- Long-lived
- 8-months of activity
- Caution
- Not RUP

Indemnify

- Root-knot & Sting
- Contact
- Long-lived
- 8-months of activity
- Caution
- Not RUP

<u>Nimitz Pro G</u>

- Sting, Lance, Rootknot
- Contact & Systemic
- Not long-lived
- 4-months of activity
- Caution
- Not RUP

RUP – Restricted Use Pesticide

Part IV:

MANAGEMENT OF PPN IN ORNAMENTAL PLANTS

Symptoms of Decline

Marken alure Malar 1/ (m) garable and with marken alure BINGAN

Above-ground

- Yellowing; nutrient deficiencies
- Stunting
- Premature wilting/slow recovery
- Thinning
- Slow decline; death

Below-ground (varies with PPN)

- Stunted, short, deformed roots
- Dark or rotted
- Lesions, galls
- Reduced root proliferation

Landscape Plants Damaged by Root-Knot

- Butterfly bush
- Hibiscus
- Boxwood
- Pittosporum
- Lantana

- Ixora
- Japanese holly
- Rose*
- Gardenia*

Use plants that are grafted unto nematode-resistant rootstock Some Landscape Plants Resistant to 3 or more species of Root-Knot

- Walter Viburnum / Blackhaw
- Sweet Pepper Bush
- Firespike
- 'Gold Dust' Croton
- Oakleaf Hydrangea

*Results from UF/IFAS research

Bedding Plants Very Susceptible to Root-Knot Nematodes

- Coleus
- Celosia
- Pansy
- Snapdragon
- Petunia

- Nasturtium
- Calendula
- Sunflower
- Zinnia
- Others*

*SEE EDIS: IN470 and INY681

Management of Nematodes in Ornamental Plants

- No chemical nematicides exist.
- Bionematicides (Ex: Melocon WG)
- Don't plant susceptible or infested plants "Right Plant/Right Place"
- Rotate bedding plants; alternate with resistant or tolerant species/varieties.
- Solarize annual plant beds.
- Add organic amendments
- Remove infested roots/soil
- Grow in containers.

Part V:

SAMPLING FOR PPN

Sampling for PPN in the Vegetable Garden

Marken about Male way (mound and and which and a second about BTATER

- Sample at end of crop.
- Both soil & roots are needed.
- Collect from around the dripline of each plant.
- Soil sampling depth should be 8-10 inches
- Do not include the first 1 inch of soil
- Only include roots from the plant being sampled.
- Place soil and roots in the same plastic bag.
- Minimum 2 cups of soil & 1-2 cups of roots
- Follow sample care and shipping instructions.

Note: The accuracy of the diagnosis depends on the quality of the sample!

Sampling for PPN in Turfgrass With Existing Damage

• Collect sample as instructed by diagnostic lab.

- Don't sample inside dead/damaged areas; these areas don't sustain PPNs.
- Collect sample from declining (still green) areas.
- Using a shovel, trowel, or core sampler, collect soil from ~20 locations.

- Combine soil into a bucket, gently mix, and remove ~one pint for analysis.
- Place sample in plastic bag, seal securely, and <u>label the bag</u> with a <u>permanent</u> marker.
- Store in a cool place, preferably a cooler or fridge, until shipping.
- Ship ASAP, preferably overnight, for analysis.

Note: The accuracy of the diagnosis depends on the quality of the sample!

Sampling for PPN in Turfgrass No Symptoms / Pre-Plant

• Collect sample as instructed by lab.

Marchan Maler Maler Marchan Manual Manual

- Sample in a "zig-zag" pattern.
- Using a shovel, trowel, or core sampler, collect from approx. 20 locations.
- Combine soil into a bucket, gently mix thoroughly, and remove ~one pint for analysis.
- Place sample in plastic bag, seal securely, and <u>label the bag</u> with a <u>permanent</u> marker.
- Store in a cool place, preferably a cooler or fridge, until shipping.
- Ship ASAP, preferably overnight, for analysis.

Note: The accuracy of the diagnosis depends on

Sampling for PPN in Turfgrass

• Proper sampling is critical to ascertain if PPN are a problem.

Marshara Mala and Mala and Marshara

- PPN are not distributed evenly
- Take approximately 20 cores per area
- Sample 3-4 inches deep
- Again, the accuracy of the diagnosis depends on the quality of the sample

171	31	9	135	280	143
266	214	19	7	197	32
710	470	107	4	149	8
88	23	50	25	427	26
331	162	29	439	64	59
105	53	11	44	52	34
33	28	158	4	264	4

PPN count from 4' x 4' squares. Note variability of PPN population across area

Sampling Depth

- Pre-plant samples normally taken 8-10 inches deep.
- Post-plant samples Depends on the crop; think about how deep the root system is.
 - Annual Crops (vegetables & annual bedding plants: 6-8 inches deep
 - Trees and Shrubs: 8 to 10 inches deep
 - Turf: 3 to 4 inches deep

Sample at the Right Time

• Nematode populations fluctuate throughout the year.

Martin about the way and and and and and and and and a start and a start of the second and and a start of the second and a

- May be undetectable during winter/early spring
- Often increase to very high populations by early fall

Sample Processing at U of FL Nematode Assay Lab

Martin alure Maler 11 An Carbon Marine Marken and an and alure 1870

Soil

100 cc Subsample Wash through several sieves to remove debris Centrifuge to compact Re-centrifuge w/ sugar suspension Wash into fine sieve Remove sugar w/ fresh water Count nematodes under stereomicroscope

Roots / Corms / Etc.

10 g roots ↓ Coffee Filter ↓ Screen ↓ Mist Chamber ↓ 72 hrs ↓ Count nematodes under stereomicroscope Ten Ways to Destroy a Nematode Sample (Don't Do These...)

- Dry the soil before bagging it.
- Put the sample in a large box so it can rattle around during shipping.
- If taking multiple samples, don't label the bags – let the lab figure it out.
- If shipping in a zip-lock bag, don't put tape over the zipper. Hopefully it won't open up in transit.

- Send grass clippings instead of soil.
- Collect less than a pint of soil.
- Sample in areas of the grass that are dead.
- Keep the sample on your dashboard to bake in the sun.
- Send the sample without a filled-out form and payment.
- Send the sample out on Friday or just before a holiday.

Nematode Assay Results

Results provide:

- Number of nematodes/100 cc soil
- Number of nematodes in 10 g roots
- Risk level measured against known thresholds for specific host.

Examples of current risk thresholds in St. Augustinegrass:

<u>PPN</u>	<u>Moderate</u>	<u>High</u>
Sting	25	50
Lance	40	120
Spiral	700	150
Stubby Root	40	120

UNIVERSITY of FLORIDA NEMATODE	Nema tode Assay Labora tory P.O. Box 119820 Building 970 Natural Area Drive University of Fordfa Gainasville, R. 32611-0620 Prone: (325 332-1094 E-mail: nemalab@tha.ufl.edu				
GROWER/OWNER NAME AND ADDRESS Name Address City/State Zb Phone () Fax () E-mail COUNTY Select Or Ext AGENT DATE COLLECTED	CONSULTANT, PEST CONTROL COMPANY, etc: Name				
Information Nee ded for Correct Interpretation of Assay IS THIS SAMPLE FOR: D lagnosis of problem of existing crop/plant Advice for a future planting Experimental data PLANTIC ROP - species and variety if known: Present Previous Future SYMPTOMS: (<) terms which describe the crop Plant - witedstuntedyellowdecline Rootgalisstunted rootsroot rotpod	Results:				
SITUATION (*): Commercial Residential Public (*) ONE OF THE FOLLOWING: Field Grove Nursery Golf Course Lawn Garden Park Playing Field Landscaping Containerize d/interior Omamental Other MAIN SOIL TYPE (*): Sand Clay Muck Artificial Mix Mari Size of crop area Recent ne maticide use, prior history of ne matodies, other pertinent in form ation					
Lab Sample No Date Received Sample Status: O Paid O IFAS Service O Other (explain)				

Activity 2

Nematode Sampling

- Many types of plant parasitic nematodes can be found in Florida soils. Symptoms of nematode damage resemble disease, improper cultural practices, and/or harsh environmental conditions. Laboratory analysis of the soil and plant roots is necessary to determine if nematodes are causing a problem.
- Refer to Activity 2 in your MG Handbook

Acknowledgements

Dr. Billy Crow Extension Nematologist – UF/IFAS

Roi Levin, M.S. Landscape Nematologist & Entomologist **Environmental Pest & Lawn Services**

2018 Revision: Sydney Park Brown Center for Landscape Conservation and Ecology

Lab Activities: Beth Bolles, Escambia Co Extension

Reviewers: Lisa Hickey, UF/IFAS Extension Manatee Co Julie McConnell, UF/IFAS Extension Bay Co